Properties

Label 153.b
Number of curves 2
Conductor 153
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("153.b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 153.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
153.b1 153b2 [0, 0, 1, -534, 4752] [3] 48  
153.b2 153b1 [0, 0, 1, 6, 27] [] 16 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 153.b have rank \(1\).

Modular form 153.2.a.b

sage: E.q_eigenform(10)
 
\( q - 2q^{4} - 3q^{5} - 4q^{7} + 3q^{11} - q^{13} + 4q^{16} + q^{17} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.