Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
153.a1 |
153a1 |
153.a |
153a |
$1$ |
$1$ |
\( 3^{2} \cdot 17 \) |
\( - 3^{3} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$0.069480281$ |
$1$ |
|
$10$ |
$8$ |
$-0.760228$ |
$-110592/17$ |
$0.95016$ |
$3.01067$ |
$[0, 0, 1, -3, 2]$ |
\(y^2+y=x^3-3x+2\) |
102.2.0.? |
$[(0, 1)]$ |
153.b1 |
153b2 |
153.b |
153b |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \) |
\( - 3^{7} \cdot 17^{3} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$102$ |
$16$ |
$0$ |
$0.338669215$ |
$1$ |
|
$10$ |
$48$ |
$0.290082$ |
$-23100424192/14739$ |
$1.03897$ |
$6.05432$ |
$[0, 0, 1, -534, 4752]$ |
\(y^2+y=x^3-534x+4752\) |
3.8.0-3.a.1.2, 102.16.0.? |
$[(14, 4)]$ |
153.b2 |
153b1 |
153.b |
153b |
$2$ |
$3$ |
\( 3^{2} \cdot 17 \) |
\( - 3^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$102$ |
$16$ |
$0$ |
$0.112889738$ |
$1$ |
|
$8$ |
$16$ |
$-0.259223$ |
$32768/459$ |
$1.01165$ |
$4.00229$ |
$[0, 0, 1, 6, 27]$ |
\(y^2+y=x^3+6x+27\) |
3.8.0-3.a.1.1, 102.16.0.? |
$[(5, 13)]$ |
153.c1 |
153c3 |
153.c |
153c |
$4$ |
$4$ |
\( 3^{2} \cdot 17 \) |
\( 3^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.12 |
2B |
$3264$ |
$1536$ |
$53$ |
$1$ |
$1$ |
|
$0$ |
$32$ |
$0.172670$ |
$82483294977/17$ |
$1.03131$ |
$6.30711$ |
$[1, -1, 0, -816, 9179]$ |
\(y^2+xy=x^3-x^2-816x+9179\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 12.12.0-4.c.1.1, 16.24.0.j.1, $\ldots$ |
$[ ]$ |
153.c2 |
153c2 |
153.c |
153c |
$4$ |
$4$ |
\( 3^{2} \cdot 17 \) |
\( 3^{6} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.20 |
2Cs |
$1632$ |
$1536$ |
$53$ |
$1$ |
$1$ |
|
$2$ |
$16$ |
$-0.173903$ |
$20346417/289$ |
$1.02963$ |
$4.65568$ |
$[1, -1, 0, -51, 152]$ |
\(y^2+xy=x^3-x^2-51x+152\) |
2.6.0.a.1, 4.12.0.a.1, 8.24.0.f.1, 12.24.0-4.a.1.1, 16.48.0.c.2, $\ldots$ |
$[ ]$ |
153.c3 |
153c1 |
153.c |
153c |
$4$ |
$4$ |
\( 3^{2} \cdot 17 \) |
\( 3^{6} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.48.0.12 |
2B |
$3264$ |
$1536$ |
$53$ |
$1$ |
$1$ |
|
$1$ |
$8$ |
$-0.520477$ |
$35937/17$ |
$1.02432$ |
$3.39557$ |
$[1, -1, 0, -6, -1]$ |
\(y^2+xy=x^3-x^2-6x-1\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.o.1, 12.12.0-4.c.1.2, 16.24.0.j.1, $\ldots$ |
$[ ]$ |
153.c4 |
153c4 |
153.c |
153c |
$4$ |
$4$ |
\( 3^{2} \cdot 17 \) |
\( - 3^{6} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
16.48.0.76 |
2B |
$3264$ |
$1536$ |
$53$ |
$1$ |
$1$ |
|
$0$ |
$32$ |
$0.172670$ |
$-35937/83521$ |
$1.18071$ |
$5.04519$ |
$[1, -1, 0, -6, 377]$ |
\(y^2+xy=x^3-x^2-6x+377\) |
2.3.0.a.1, 4.12.0.d.1, 8.24.0.t.1, 12.24.0-4.d.1.1, 16.48.0.m.2, $\ldots$ |
$[ ]$ |
153.d1 |
153d1 |
153.d |
153d |
$1$ |
$1$ |
\( 3^{2} \cdot 17 \) |
\( - 3^{9} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24$ |
$-0.210922$ |
$-110592/17$ |
$0.95016$ |
$4.32103$ |
$[0, 0, 1, -27, -61]$ |
\(y^2+y=x^3-27x-61\) |
102.2.0.? |
$[ ]$ |