# Properties

 Label 152880.ey6 Conductor 152880 Discriminant 2120733170863017984000000 j-invariant $$\frac{7850236389974007121}{4400862921000000}$$ CM no Rank 2 Torsion Structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -32461536, -12600832140]) # or

sage: E = EllipticCurve("152880ca2")

gp: E = ellinit([0, 1, 0, -32461536, -12600832140]) \\ or

gp: E = ellinit("152880ca2")

magma: E := EllipticCurve([0, 1, 0, -32461536, -12600832140]); // or

magma: E := EllipticCurve("152880ca2");

$$y^2 = x^{3} + x^{2} - 32461536 x - 12600832140$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(11706, -1100736\right)$$ $$\left(-1524, 182574\right)$$ $$\hat{h}(P)$$ ≈ 1.4450072510948995 3.150684440413613

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-390, 0\right)$$, $$\left(5882, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-5493, 0\right)$$, $$(-3036,\pm 240786)$$, $$(-2118,\pm 216000)$$, $$(-1524,\pm 182574)$$, $$(-774,\pm 109824)$$, $$\left(-390, 0\right)$$, $$\left(5882, 0\right)$$, $$(6171,\pm 148716)$$, $$(9132,\pm 672750)$$, $$(11706,\pm 1100736)$$, $$(18132,\pm 2315250)$$, $$(27834,\pm 4544064)$$, $$(82959,\pm 23837814)$$, $$(453882,\pm 305760000)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$152880$$ = $$2^{4} \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$2120733170863017984000000$$ = $$2^{18} \cdot 3^{12} \cdot 5^{6} \cdot 7^{8} \cdot 13^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{7850236389974007121}{4400862921000000}$$ = $$2^{-6} \cdot 3^{-12} \cdot 5^{-6} \cdot 7^{-2} \cdot 13^{-2} \cdot 31^{3} \cdot 61^{3} \cdot 1051^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$4.4494652908$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.067989376521$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$768$$  = $$2^{2}\cdot( 2^{2} \cdot 3 )\cdot2\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

#### Modular form 152880.2.a.ey

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} - q^{5} + q^{9} - q^{13} - q^{15} - 6q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 21233664 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$14.5207858067$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_10^{*}$$ Additive -1 4 18 6
$$3$$ $$12$$ $$I_{12}$$ Split multiplicative -1 1 12 12
$$5$$ $$2$$ $$I_{6}$$ Non-split multiplicative 1 1 6 6
$$7$$ $$4$$ $$I_2^{*}$$ Additive -1 2 8 2
$$13$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8c.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 6 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 5 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs
$$3$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 152880.ey consists of 8 curves linked by isogenies of degrees dividing 12.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{7})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database
4 $$\Q(\sqrt{-2}, \sqrt{7})$$ $$\Z/2\Z \times \Z/12\Z$$ Not in database
$$\Q(\sqrt{-7}, \sqrt{65})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$$\Q(\sqrt{2}, \sqrt{455})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
6 6.0.829482728256.3 $$\Z/2\Z \times \Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.