Properties

Label 152460h
Number of curves $2$
Conductor $152460$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 152460h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
152460.cc2 152460h1 \([0, 0, 0, -23232, 4273841]\) \(-67108864/343035\) \(-7088299435934640\) \([2]\) \(921600\) \(1.7257\) \(\Gamma_0(N)\)-optimal
152460.cc1 152460h2 \([0, 0, 0, -562287, 162001334]\) \(59466754384/121275\) \(40095431152761600\) \([2]\) \(1843200\) \(2.0723\)  

Rank

sage: E.rank()
 

The elliptic curves in class 152460h have rank \(0\).

Complex multiplication

The elliptic curves in class 152460h do not have complex multiplication.

Modular form 152460.2.a.h

sage: E.q_eigenform(10)
 
\(q + q^{5} + q^{7} + 6q^{13} + 2q^{17} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.