Properties

Label 15210u
Number of curves $4$
Conductor $15210$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15210u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15210u do not have complex multiplication.

Modular form 15210.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 2 q^{7} - q^{8} - q^{10} + 2 q^{14} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 15210u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15210.o4 15210u1 \([1, -1, 0, 6080166, -218931660]\) \(7064514799444439/4094064000000\) \(-14405962157134704000000\) \([2]\) \(967680\) \(2.9413\) \(\Gamma_0(N)\)-optimal
15210.o3 15210u2 \([1, -1, 0, -24339834, -1733847660]\) \(453198971846635561/261896250564000\) \(921545797701367731204000\) \([2]\) \(1935360\) \(3.2879\)  
15210.o2 15210u3 \([1, -1, 0, -81187209, 303745655565]\) \(-16818951115904497561/1592332281446400\) \(-5603009280778416055910400\) \([2]\) \(2903040\) \(3.4906\)  
15210.o1 15210u4 \([1, -1, 0, -1327190409, 18610273870605]\) \(73474353581350183614361/576510977802240\) \(2028594406289641491824640\) \([2]\) \(5806080\) \(3.8372\)