Properties

Label 15210d
Number of curves $4$
Conductor $15210$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 15210d have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 3 T + 7 T^{2}\) 1.7.d
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 15210d do not have complex multiplication.

Modular form 15210.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 2 q^{7} - q^{8} - q^{10} + 6 q^{11} + 2 q^{14} + q^{16} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 15210d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
15210.p3 15210d1 \([1, -1, 0, -1299, 20853]\) \(-1860867/320\) \(-41703629760\) \([2]\) \(17280\) \(0.76411\) \(\Gamma_0(N)\)-optimal
15210.p2 15210d2 \([1, -1, 0, -21579, 1225485]\) \(8527173507/200\) \(26064768600\) \([2]\) \(34560\) \(1.1107\)  
15210.p4 15210d3 \([1, -1, 0, 8841, -89335]\) \(804357/500\) \(-47503040773500\) \([2]\) \(51840\) \(1.3134\)  
15210.p1 15210d4 \([1, -1, 0, -36789, -700777]\) \(57960603/31250\) \(2968940048343750\) \([2]\) \(103680\) \(1.6600\)