# Properties

 Label 152.b1 Conductor $152$ Discriminant $-38912$ j-invariant $$-\frac{31250}{19}$$ CM no Rank $0$ Torsion structure trivial

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2=x^3+x^2-8x-16$$ y^2=x^3+x^2-8x-16 (homogenize, simplify) $$y^2z=x^3+x^2z-8xz^2-16z^3$$ y^2z=x^3+x^2z-8xz^2-16z^3 (dehomogenize, simplify) $$y^2=x^3-675x-9666$$ y^2=x^3-675x-9666 (homogenize, minimize)

sage: E = EllipticCurve([0, 1, 0, -8, -16])

gp: E = ellinit([0, 1, 0, -8, -16])

magma: E := EllipticCurve([0, 1, 0, -8, -16]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

trivial

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

None

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$152$$ = $2^{3} \cdot 19$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $-38912$ = $-1 \cdot 2^{11} \cdot 19$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{31250}{19}$$ = $-1 \cdot 2 \cdot 5^{6} \cdot 19^{-1}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $-0.41717827483890423422484473074\dots$ Stable Faltings height: $-1.0525631903521874345239741754\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $1.3670652145465427129281223278\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $1$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $1$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $1$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.3670652145465427129281223278$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + 3 q^{7} - 2 q^{9} + 2 q^{11} + q^{13} - 5 q^{17} + q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 8 $\Gamma_0(N)$-optimal: yes Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 2 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $II^{*}$ Additive 1 3 11 0
$19$ $1$ $I_{1}$ Split multiplicative -1 1 1 1

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$.

The image of the adelic Galois representation has level $152$, index $2$, and genus $0$.

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add ord ss ord ord ord ord split ord ord ord ord ord ord ord - 2 0,0 0 0 2 0 1 0 0 0 0 0 0 0 - 0 0,0 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 152.b consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.152.1 $$\Z/2\Z$$ Not in database $6$ 6.0.3511808.1 $$\Z/2\Z \oplus \Z/2\Z$$ Not in database $8$ 8.2.291852315648.7 $$\Z/3\Z$$ Not in database $12$ 12.2.119973433931988992.10 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive.