Minimal Weierstrass equation
\( y^2 + x y + y = x^{3} + x^{2} + 35 x - 28 \)
Mordell-Weil group structure
Torsion generators
\( \left(2, 6\right) \)
Integral points
\( \left(2, 6\right) \), \( \left(7, 21\right) \), \( \left(32, 171\right) \)
Invariants
|
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
| Conductor: | \( 15 \) | = | \(3 \cdot 5\) | ||
|
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
| Discriminant: | \(-3515625 \) | = | \(-1 \cdot 3^{2} \cdot 5^{8} \) | ||
|
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
| j-invariant: | \( \frac{4733169839}{3515625} \) | = | \(3^{-2} \cdot 5^{-8} \cdot 23^{3} \cdot 73^{3}\) | ||
| Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
| Sato-Tate Group: | $\mathrm{SU}(2)$ | ||||
BSD invariants
|
magma: Rank(E);
sage: E.rank()
|
|||
| Rank: | \(0\) | ||
|
magma: Regulator(E);
sage: E.regulator()
|
|||
| Regulator: | \(1\) | ||
|
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
| Real period: | \(1.40060304233\) | ||
|
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
| Tamagawa product: | \( 16 \) = \( 2\cdot2^{3} \) | ||
|
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
| Torsion order: | \(8\) | ||
|
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
| Analytic order of Ш: | \(1\) (exact) | ||
Modular invariants
Modular form 15.2.a.a
|
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
| Modular degree: | 2 | ||
| \( \Gamma_0(N) \)-optimal: | no | ||
| Manin constant: | 1 | ||
Special L-value
\( L(E,1) \) ≈ \( 0.350150760583 \)
Local data
| prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
|---|---|---|---|---|---|---|---|
| \(3\) | \(2\) | \( I_{2} \) | Non-split multiplicative | 1 | 1 | 2 | 2 |
| \(5\) | \(8\) | \( I_{8} \) | Split multiplicative | -1 | 1 | 8 | 8 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X195l.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 3 \\ 0 & 1 \end{array}\right)$ and has index 96.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
| prime | Image of Galois representation |
|---|---|
| \(2\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
| $p$ | 2 | 3 | 5 |
|---|---|---|---|
| Reduction type | ordinary | nonsplit | split |
| $\lambda$-invariant(s) | 0 | 0 | 1 |
| $\mu$-invariant(s) | 2 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class 15.a
consists of 8 curves linked by isogenies of
degrees dividing 16.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{8}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
|---|---|---|---|
| 2 | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \times \Z/8\Z\) | 2.0.4.1-225.2-a5 |
| 4 | 4.2.3600.1 | \(\Z/16\Z\) | Not in database |
| \(\Q(i, \sqrt{6})\) | \(\Z/4\Z \times \Z/8\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.