Minimal Weierstrass equation
\( y^2 + x y + y = x^{3} + x^{2} - 2160 x - 39540 \)
Mordell-Weil group structure
Torsion generators
\( \left(-\frac{109}{4}, \frac{105}{8}\right) \)
Integral points
Invariants
magma: Conductor(E);
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
|
|||||
Conductor: | \( 15 \) | = | \(3 \cdot 5\) | ||
magma: Discriminant(E);
sage: E.discriminant().factor()
gp: E.disc
|
|||||
Discriminant: | \(405 \) | = | \(3^{4} \cdot 5 \) | ||
magma: jInvariant(E);
sage: E.j_invariant().factor()
gp: E.j
|
|||||
j-invariant: | \( \frac{1114544804970241}{405} \) | = | \(3^{-4} \cdot 5^{-1} \cdot 103681^{3}\) | ||
Endomorphism ring: | \(\Z\) | (no Complex Multiplication) | |||
Sato-Tate Group: | $\mathrm{SU}(2)$ |
BSD invariants
magma: Rank(E);
sage: E.rank()
|
|||
Rank: | \(0\) | ||
magma: Regulator(E);
sage: E.regulator()
|
|||
Regulator: | \(1\) | ||
magma: RealPeriod(E);
sage: E.period_lattice().omega()
gp: E.omega[1]
|
|||
Real period: | \(0.700301521166\) | ||
magma: TamagawaNumbers(E);
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
|
|||
Tamagawa product: | \( 2 \) = \( 2\cdot1 \) | ||
magma: Order(TorsionSubgroup(E));
sage: E.torsion_order()
gp: elltors(E)[1]
|
|||
Torsion order: | \(2\) | ||
magma: MordellWeilShaInformation(E);
sage: E.sha().an_numerical()
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 15.2.a.a
magma: ModularDegree(E);
sage: E.modular_degree()
|
|||
Modular degree: | 4 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 |
Special L-value
\( L(E,1) \) ≈ \( 0.350150760583 \)
Local data
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(3\) | \(2\) | \( I_{4} \) | Non-split multiplicative | 1 | 1 | 4 | 4 |
\(5\) | \(1\) | \( I_{1} \) | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X225g.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 5 & 5 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 3 \end{array}\right)$ and has index 96.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).
Iwasawa invariants
$p$ | 2 | 3 | 5 |
---|---|---|---|
Reduction type | ordinary | nonsplit | split |
$\lambda$-invariant(s) | 0 | 0 | 1 |
$\mu$-invariant(s) | 3 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4, 8 and 16.
Its isogeny class 15.a
consists of 8 curves linked by isogenies of
degrees dividing 16.
Growth of torsion in number fields
The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base-change curve |
---|---|---|---|
2 | \(\Q(\sqrt{-5}) \) | \(\Z/4\Z\) | Not in database |
\(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | 2.0.4.1-225.2-a10 | |
\(\Q(\sqrt{5}) \) | \(\Z/2\Z \times \Z/2\Z\) | 2.2.5.1-45.1-a9 | |
4 | \(\Q(\zeta_{8})\) | \(\Z/8\Z\) | Not in database |
\(\Q(i, \sqrt{10})\) | \(\Z/8\Z\) | Not in database | |
4.0.32000.1 | \(\Z/8\Z\) | Not in database | |
\(\Q(i, \sqrt{5})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database | |
4.2.2000.1 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.