Properties

Label 149454.bj
Number of curves $1$
Conductor $149454$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 149454.bj1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(19\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 149454.bj do not have complex multiplication.

Modular form 149454.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 4 q^{5} - 2 q^{7} + q^{8} - 4 q^{10} + 6 q^{13} - 2 q^{14} + q^{16} - q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 149454.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
149454.bj1 149454a1 \([1, -1, 1, -29822, 1989645]\) \(11145142527409/35328\) \(9297234432\) \([]\) \(497664\) \(1.1376\) \(\Gamma_0(N)\)-optimal