Show commands for:
SageMath
sage: E = EllipticCurve("cp1")
sage: E.isogeny_class()
Elliptic curves in class 148225cp
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
148225.co2 | 148225cp1 | [1, 1, 0, -36775, 2699250] | [] | 302400 | \(\Gamma_0(N)\)-optimal |
148225.co1 | 148225cp2 | [1, 1, 0, -373650, -343810375] | [] | 3326400 |
Rank
sage: E.rank()
The elliptic curves in class 148225cp have rank \(1\).
Complex multiplication
The elliptic curves in class 148225cp do not have complex multiplication.Modular form 148225.2.a.cp
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.