Properties

Label 1480.b
Number of curves $2$
Conductor $1480$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 1480.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1480.b1 1480c1 \([0, 1, 0, -60, 160]\) \(94875856/185\) \(47360\) \([2]\) \(192\) \(-0.21435\) \(\Gamma_0(N)\)-optimal
1480.b2 1480c2 \([0, 1, 0, -40, 288]\) \(-7086244/34225\) \(-35046400\) \([2]\) \(384\) \(0.13222\)  

Rank

sage: E.rank()
 

The elliptic curves in class 1480.b have rank \(1\).

Complex multiplication

The elliptic curves in class 1480.b do not have complex multiplication.

Modular form 1480.2.a.b

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} + 2 q^{7} + q^{9} - 6 q^{13} - 2 q^{15} - 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.