Show commands:
SageMath
E = EllipticCurve("b1")
E.isogeny_class()
Elliptic curves in class 1480.b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1480.b1 | 1480c1 | \([0, 1, 0, -60, 160]\) | \(94875856/185\) | \(47360\) | \([2]\) | \(192\) | \(-0.21435\) | \(\Gamma_0(N)\)-optimal |
1480.b2 | 1480c2 | \([0, 1, 0, -40, 288]\) | \(-7086244/34225\) | \(-35046400\) | \([2]\) | \(384\) | \(0.13222\) |
Rank
sage: E.rank()
The elliptic curves in class 1480.b have rank \(1\).
Complex multiplication
The elliptic curves in class 1480.b do not have complex multiplication.Modular form 1480.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.