Properties

Label 1472.a
Number of curves $1$
Conductor $1472$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Elliptic curves in class 1472.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1472.a1 1472g1 \([0, 0, 0, -220, -1256]\) \(-1149984000/23\) \(-23552\) \([]\) \(384\) \(-0.040290\) \(\Gamma_0(N)\)-optimal

Rank

Copy content sage:E.rank()
 

The elliptic curve 1472.a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T + 3 T^{2}\) 1.3.d
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1472.a do not have complex multiplication.

Modular form 1472.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{3} - 2 q^{7} + 6 q^{9} + 5 q^{13} - 6 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display