# Properties

 Label 145728fj Number of curves 2 Conductor 145728 CM no Rank 1 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("145728.dv1")

sage: E.isogeny_class()

## Elliptic curves in class 145728fj

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
145728.dv2 145728fj1 [0, 0, 0, -13260, 8546416]  655360 $$\Gamma_0(N)$$-optimal
145728.dv1 145728fj2 [0, 0, 0, -713100, 229975792]  1310720

## Rank

sage: E.rank()

The elliptic curves in class 145728fj have rank $$1$$.

## Modular form 145728.2.a.dv

sage: E.q_eigenform(10)

$$q - 2q^{7} + q^{11} - 2q^{13} - 2q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 