Properties

Label 145728bq
Number of curves 2
Conductor 145728
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("145728.ed1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 145728bq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
145728.ed2 145728bq1 [0, 0, 0, -13260, -8546416] [2] 655360 \(\Gamma_0(N)\)-optimal
145728.ed1 145728bq2 [0, 0, 0, -713100, -229975792] [2] 1310720  

Rank

sage: E.rank()
 

The elliptic curves in class 145728bq have rank \(0\).

Modular form 145728.2.a.ed

sage: E.q_eigenform(10)
 
\( q + 2q^{7} - q^{11} - 2q^{13} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.