Properties

Label 1452d
Number of curves 2
Conductor 1452
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("1452.f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1452d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1452.f2 1452d1 [0, 1, 0, 323, 1340] [2] 720 \(\Gamma_0(N)\)-optimal
1452.f1 1452d2 [0, 1, 0, -1492, 10052] [2] 1440  

Rank

sage: E.rank()
 

The elliptic curves in class 1452d have rank \(0\).

Modular form 1452.2.a.f

sage: E.q_eigenform(10)
 
\( q + q^{3} + 2q^{5} + 2q^{7} + q^{9} + 2q^{13} + 2q^{15} - 4q^{17} + 6q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.