# Properties

 Label 145200.jq Number of curves 2 Conductor 145200 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("145200.jq1")

sage: E.isogeny_class()

## Elliptic curves in class 145200.jq

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
145200.jq1 145200ct2 [0, 1, 0, -37308, -1331112] [2] 737280
145200.jq2 145200ct1 [0, 1, 0, 8067, -151362] [2] 368640 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 145200.jq have rank $$0$$.

## Modular form 145200.2.a.jq

sage: E.q_eigenform(10)

$$q + q^{3} + 2q^{7} + q^{9} - 2q^{13} + 4q^{17} - 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.