Properties

Label 14490.n
Number of curves $2$
Conductor $14490$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 14490.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14490.n1 14490b1 \([1, -1, 0, -1275, -16875]\) \(8493409990827/185150000\) \(4999050000\) \([2]\) \(10240\) \(0.64932\) \(\Gamma_0(N)\)-optimal
14490.n2 14490b2 \([1, -1, 0, 105, -52479]\) \(4716275733/44023437500\) \(-1188632812500\) \([2]\) \(20480\) \(0.99590\)  

Rank

sage: E.rank()
 

The elliptic curves in class 14490.n have rank \(0\).

Complex multiplication

The elliptic curves in class 14490.n do not have complex multiplication.

Modular form 14490.2.a.n

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} + q^{7} - q^{8} + q^{10} + 2q^{11} + 2q^{13} - q^{14} + q^{16} + 2q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.