Show commands for:
SageMath
sage: E = EllipticCurve("14415.d1")
sage: E.isogeny_class()
Elliptic curves in class 14415g
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
14415.d7 | 14415g1 | [1, 0, 0, -20, -5553] | [2] | 7680 | \(\Gamma_0(N)\)-optimal |
14415.d6 | 14415g2 | [1, 0, 0, -4825, -127600] | [2, 2] | 15360 | |
14415.d4 | 14415g3 | [1, 0, 0, -76900, -8214415] | [2] | 30720 | |
14415.d5 | 14415g4 | [1, 0, 0, -9630, 167427] | [2, 2] | 30720 | |
14415.d2 | 14415g5 | [1, 0, 0, -129755, 17969952] | [2, 2] | 61440 | |
14415.d8 | 14415g6 | [1, 0, 0, 33615, 1265850] | [2] | 61440 | |
14415.d1 | 14415g7 | [1, 0, 0, -2075780, 1150945707] | [2] | 122880 | |
14415.d3 | 14415g8 | [1, 0, 0, -105730, 24836297] | [2] | 122880 |
Rank
sage: E.rank()
The elliptic curves in class 14415g have rank \(0\).
Modular form 14415.2.a.d
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.