Show commands: SageMath
Rank
The elliptic curves in class 144150et have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 144150et do not have complex multiplication.Modular form 144150.2.a.et
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 144150et
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 144150.r2 | 144150et1 | \([1, 1, 0, 936475, -85021875]\) | \(6549699311/4017600\) | \(-55713043574775000000\) | \([2]\) | \(4423680\) | \(2.4781\) | \(\Gamma_0(N)\)-optimal |
| 144150.r1 | 144150et2 | \([1, 1, 0, -3868525, -695256875]\) | \(461710681489/252204840\) | \(3497386310406500625000\) | \([2]\) | \(8847360\) | \(2.8246\) |