Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3+x^2+4852550x+9657956500\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3+x^2z+4852550xz^2+9657956500z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+6288904125x+450507284898750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(-18059/16, 3389047/64)$ | $6.8899831049027151132083074626$ | $\infty$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 144150 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 31^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-47591319889207800000000$ | = | $-1 \cdot 2^{9} \cdot 3^{2} \cdot 5^{8} \cdot 31^{9} $ |
|
| j-invariant: | $j$ | = | \( \frac{36450495095}{137276928} \) | = | $2^{-9} \cdot 3^{-2} \cdot 5 \cdot 7^{3} \cdot 31^{-3} \cdot 277^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.0342293006571528334092074659$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.24427709012517946071078574814$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9552998756360596$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.009409697045197$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.8899831049027151132083074626$ |
|
| Real period: | $\Omega$ | ≈ | $0.080523444704919387585243404818$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.2192206942618503065883144400 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.219220694 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.080523 \cdot 6.889983 \cdot 4}{1^2} \\ & \approx 2.219220694\end{aligned}$$
Modular invariants
Modular form 144150.2.a.k
For more coefficients, see the Downloads section to the right.
| Modular degree: | 12441600 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{9}$ | nonsplit multiplicative | 1 | 1 | 9 | 9 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
| $31$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 744 = 2^{3} \cdot 3 \cdot 31 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 373 & 6 \\ 375 & 19 \end{array}\right),\left(\begin{array}{rr} 431 & 738 \\ 549 & 725 \end{array}\right),\left(\begin{array}{rr} 741 & 742 \\ 734 & 737 \end{array}\right),\left(\begin{array}{rr} 530 & 219 \\ 103 & 379 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 739 & 6 \\ 738 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 559 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[744])$ is a degree-$4114022400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/744\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 24025 = 5^{2} \cdot 31^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 24025 = 5^{2} \cdot 31^{2} \) |
| $5$ | additive | $14$ | \( 5766 = 2 \cdot 3 \cdot 31^{2} \) |
| $31$ | additive | $512$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 144150ec
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 4650ba2, its twist by $-155$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{93}) \) | \(\Z/3\Z\) | not in database |
| $3$ | 3.1.6200.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.9533120000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $6$ | 6.0.1099455474375.2 | \(\Z/3\Z\) | not in database |
| $6$ | 6.2.32174280000.5 | \(\Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $18$ | 18.6.3538542009080889211353656083825145653564453125.2 | \(\Z/9\Z\) | not in database |
| $18$ | 18.0.348395759284180599517270366656000000000000.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | ord | ord | ord | ss | ord | ord | ord | add | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 11 | 3 | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.