# Properties

 Label 14400s Number of curves 2 Conductor 14400 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("14400.q1")

sage: E.isogeny_class()

## Elliptic curves in class 14400s

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
14400.q2 14400s1 [0, 0, 0, -540, -10800]  12288 $$\Gamma_0(N)$$-optimal
14400.q1 14400s2 [0, 0, 0, -11340, -464400]  24576

## Rank

sage: E.rank()

The elliptic curves in class 14400s have rank $$0$$.

## Modular form 14400.2.a.q

sage: E.q_eigenform(10)

$$q - 4q^{7} + 4q^{11} - 4q^{13} + 6q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 