Show commands for:
SageMath
sage: E = EllipticCurve("14400.cz1")
sage: E.isogeny_class()
Elliptic curves in class 14400dp
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
14400.cz7 | 14400dp1 | [0, 0, 0, -300, 322000] | [2] | 24576 | \(\Gamma_0(N)\)-optimal |
14400.cz6 | 14400dp2 | [0, 0, 0, -72300, 7378000] | [2, 2] | 49152 | |
14400.cz5 | 14400dp3 | [0, 0, 0, -144300, -9758000] | [2, 2] | 98304 | |
14400.cz4 | 14400dp4 | [0, 0, 0, -1152300, 476098000] | [2] | 98304 | |
14400.cz2 | 14400dp5 | [0, 0, 0, -1944300, -1042958000] | [2, 2] | 196608 | |
14400.cz8 | 14400dp6 | [0, 0, 0, 503700, -73262000] | [2] | 196608 | |
14400.cz1 | 14400dp7 | [0, 0, 0, -31104300, -66769598000] | [2] | 393216 | |
14400.cz3 | 14400dp8 | [0, 0, 0, -1584300, -1441118000] | [2] | 393216 |
Rank
sage: E.rank()
The elliptic curves in class 14400dp have rank \(1\).
Modular form 14400.2.a.cz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.