Properties

Label 14400dl
Number of curves 2
Conductor 14400
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("14400.i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 14400dl

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
14400.i2 14400dl1 [0, 0, 0, -13500, 1350000] [2] 61440 \(\Gamma_0(N)\)-optimal
14400.i1 14400dl2 [0, 0, 0, -283500, 58050000] [2] 122880  

Rank

sage: E.rank()
 

The elliptic curves in class 14400dl have rank \(1\).

Modular form 14400.2.a.i

sage: E.q_eigenform(10)
 
\( q - 4q^{7} - 4q^{11} + 4q^{13} - 6q^{17} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.