Properties

 Label 14400cp1 Conductor 14400 Discriminant -16325867520000 j-invariant $$-\frac{8780800}{2187}$$ CM no Rank 1 Torsion Structure $$\mathrm{Trivial}$$

Related objects

Show commands for: Magma / SageMath / Pari/GP

Minimal Weierstrass equation

magma: E := EllipticCurve([0, 0, 0, -8400, -354400]); // or

magma: E := EllipticCurve("14400cp1");

sage: E = EllipticCurve([0, 0, 0, -8400, -354400]) # or

sage: E = EllipticCurve("14400cp1")

gp: E = ellinit([0, 0, 0, -8400, -354400]) \\ or

gp: E = ellinit("14400cp1")

$$y^2 = x^{3} - 8400 x - 354400$$

Mordell-Weil group structure

$$\Z$$

Infinite order Mordell-Weil generator and height

magma: Generators(E);

sage: E.gens()

 $$P$$ = $$\left(145, 1215\right)$$ $$\hat{h}(P)$$ ≈ 1.20436735955

Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

$$(145,\pm 1215)$$

Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$14400$$ = $$2^{6} \cdot 3^{2} \cdot 5^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-16325867520000$$ = $$-1 \cdot 2^{14} \cdot 3^{13} \cdot 5^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{8780800}{2187}$$ = $$-1 \cdot 2^{10} \cdot 3^{-7} \cdot 5^{2} \cdot 7^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$1$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1.20436735955$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.246117585893$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$12$$  = $$1\cdot2^{2}\cdot3$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

Modular invariants

Modular form 14400.2.a.a

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - 5q^{7} - 6q^{11} + 3q^{13} + 2q^{17} - q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 43008 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L'(E,1)$$ ≈ $$3.55699184474$$

Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$II^{*}$$ Additive 1 6 14 0
$$3$$ $$4$$ $$I_7^{*}$$ Additive -1 2 13 7
$$5$$ $$3$$ $$IV$$ Additive -1 2 4 0

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge5$$ of good ordinary reduction.

Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 add add add ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary - - - 1 1 1 1 1 1 1 1 1 1 1 1 - - - 0 0 0 0 0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has no rational isogenies. Its isogeny class 14400cp consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.1.300.1 $$\Z/2\Z$$ Not in database
6 6.0.270000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.