Properties

Label 14400.o4
Conductor $14400$
Discriminant $1.008\times 10^{17}$
j-invariant \( \frac{2656166199049}{33750} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -4154700, 3259514000])
 
gp: E = ellinit([0, 0, 0, -4154700, 3259514000])
 
magma: E := EllipticCurve([0, 0, 0, -4154700, 3259514000]);
 

\(y^2=x^3-4154700x+3259514000\)  Toggle raw display

Mordell-Weil group structure

\(\Z\times \Z/{2}\Z\)

Infinite order Mordell-Weil generator and height

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \(\left(1165, 675\right)\)  Toggle raw display
\(\hat{h}(P)\) ≈  $1.6937739378660145989615521889$

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(1180, 0\right) \)  Toggle raw display

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((-320,\pm 67500)\), \((1165,\pm 675)\), \( \left(1180, 0\right) \)  Toggle raw display

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 14400 \)  =  \(2^{6} \cdot 3^{2} \cdot 5^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(100776960000000000 \)  =  \(2^{19} \cdot 3^{9} \cdot 5^{10} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{2656166199049}{33750} \)  =  \(2^{-1} \cdot 3^{-3} \cdot 5^{-4} \cdot 11^{3} \cdot 1259^{3}\)
Endomorphism ring: \(\Z\)
Geometric endomorphism ring: \(\Z\) (no potential complex multiplication)
Sato-Tate group: $\mathrm{SU}(2)$
Faltings height: \(2.4086057122733198317154701704\dots\)
Stable Faltings height: \(0.014859840882296834591619703139\dots\)

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Analytic rank: \(1\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1.6937739378660145989615521889\dots\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.30598961219612366507134781838\dots\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 32 \)  = \( 2\cdot2^{2}\cdot2^{2} \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (exact)

Modular invariants

Modular form 14400.2.a.o

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - 4q^{7} + 2q^{13} + 6q^{17} - 4q^{19} + O(q^{20}) \)  Toggle raw display

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 294912
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L'(E,1) \) ≈ \( 4.1462178431641845409535447566469944932 \)

Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \(I_9^{*}\) Additive -1 6 19 1
\(3\) \(4\) \(I_3^{*}\) Additive -1 2 9 3
\(5\) \(4\) \(I_4^{*}\) Additive 1 2 10 4

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13b.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 4 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]
 

\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Reduction type add add add ordinary ss ordinary ordinary ordinary ss ordinary ordinary ordinary ordinary ordinary ss
$\lambda$-invariant(s) - - - 1 1,3 1 1 1 1,1 1 1 1 1 1 1,1
$\mu$-invariant(s) - - - 0 0,0 0 0 0 0,0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 14400.o consists of 6 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ \(\Q(\sqrt{6}) \) \(\Z/2\Z \times \Z/2\Z\) Not in database
$2$ \(\Q(\sqrt{15}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{10}) \) \(\Z/4\Z\) Not in database
$2$ \(\Q(\sqrt{30}) \) \(\Z/6\Z\) 2.2.120.1-30.1-i7
$4$ \(\Q(\sqrt{6}, \sqrt{10})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
$4$ \(\Q(\sqrt{5}, \sqrt{6})\) \(\Z/2\Z \times \Z/6\Z\) Not in database
$4$ \(\Q(\sqrt{2}, \sqrt{15})\) \(\Z/12\Z\) Not in database
$4$ \(\Q(\sqrt{3}, \sqrt{10})\) \(\Z/12\Z\) Not in database
$6$ 6.0.57600000.1 \(\Z/6\Z\) Not in database
$8$ 8.0.1911029760000.17 \(\Z/2\Z \times \Z/4\Z\) Not in database
$8$ 8.8.849346560000.4 \(\Z/2\Z \times \Z/8\Z\) Not in database
$8$ 8.0.7464960000.2 \(\Z/8\Z\) Not in database
$8$ 8.8.3317760000.1 \(\Z/2\Z \times \Z/12\Z\) Not in database
$12$ Deg 12 \(\Z/3\Z \times \Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/2\Z \times \Z/6\Z\) Not in database
$12$ Deg 12 \(\Z/12\Z\) Not in database
$12$ Deg 12 \(\Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/4\Z \times \Z/4\Z\) Not in database
$16$ 16.0.891610044825600000000.1 \(\Z/2\Z \times \Z/8\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/12\Z\) Not in database
$16$ Deg 16 \(\Z/2\Z \times \Z/24\Z\) Not in database
$16$ 16.0.891610044825600000000.8 \(\Z/24\Z\) Not in database
$18$ 18.6.14572743731591310213120000000000000.1 \(\Z/18\Z\) Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.