# Properties

 Label 14400.n4 Conductor $14400$ Discriminant $-314928000000$ j-invariant $$0$$ CM yes ($$D=-3$$) Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, 0, 27000])

gp: E = ellinit([0, 0, 0, 0, 27000])

magma: E := EllipticCurve([0, 0, 0, 0, 27000]);

$$y^2=x^3+27000$$

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-30, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-30, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$14400$$ = $$2^{6} \cdot 3^{2} \cdot 5^{2}$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-314928000000$$ = $$-1 \cdot 2^{10} \cdot 3^{9} \cdot 5^{6}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$0$$ = $$0$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z[(1+\sqrt{-3})/2]$$ (potential complex multiplication) Sato-Tate group: $N(\mathrm{U}(1))$ Faltings height: $$0.88518339475671563203797116633\dots$$ Stable Faltings height: $$-1.3211174284280379149898691959\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.76800676881683600962349845570\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$8$$  = $$2\cdot2\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 14400.2.a.n

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - 4q^{7} + 2q^{13} + 8q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 13824 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.5360135376336720192469969113916528449$$

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_0^{*}$$ Additive -1 6 10 0
$$3$$ $$2$$ $$III^{*}$$ Additive 1 2 9 0
$$5$$ $$2$$ $$I_0^{*}$$ Additive 1 2 6 0

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image for all primes $$p < 1000$$ except those listed.

prime Image of Galois representation
$$2$$ B

For all other primes $$p$$, the image is a Borel subgroup if $$p=3$$, the normalizer of a split Cartan subgroup if $$\left(\frac{ -3 }{p}\right)=+1$$ or the normalizer of a nonsplit Cartan subgroup if $$\left(\frac{ -3 }{p}\right)=-1$$.

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 5 add add add - - - - - -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2, 3 and 6.
Its isogeny class 14400.n consists of 4 curves linked by isogenies of degrees dividing 6.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-3})$$ $$\Z/2\Z \times \Z/2\Z$$ Not in database $2$ $$\Q(\sqrt{30})$$ $$\Z/6\Z$$ Not in database $4$ 4.2.172800.5 $$\Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{-3}, \sqrt{-10})$$ $$\Z/2\Z \times \Z/6\Z$$ Not in database $6$ 6.0.186624000.9 $$\Z/6\Z$$ Not in database $8$ 8.0.29859840000.9 $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ 8.4.119439360000.4 $$\Z/12\Z$$ Not in database $12$ Deg 12 $$\Z/6\Z \times \Z/6\Z$$ Not in database $12$ Deg 12 $$\Z/2\Z \times \Z/14\Z$$ Not in database $16$ Deg 16 $$\Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/12\Z$$ Not in database $18$ 18.6.10362839986909376151552000000000.3 $$\Z/18\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.