Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+60x\)
|
(homogenize, simplify) |
\(y^2z=x^3+60xz^2\)
|
(dehomogenize, simplify) |
\(y^2=x^3+60x\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(6, 24\right)\)
|
$\hat{h}(P)$ | ≈ | $0.86209625132368835400397945687$ |
Torsion generators
\( \left(0, 0\right) \)
Integral points
\( \left(0, 0\right) \), \((6,\pm 24)\), \((10,\pm 40)\), \((240,\pm 3720)\)
Invariants
Conductor: | \( 14400 \) | = | $2^{6} \cdot 3^{2} \cdot 5^{2}$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-13824000 $ | = | $-1 \cdot 2^{12} \cdot 3^{3} \cdot 5^{3} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( 1728 \) | = | $2^{6} \cdot 3^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z[\sqrt{-1}]\) | (potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $N(\mathrm{U}(1))$ | |||
Faltings height: | $0.059626804923988307663958180693\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $-1.3105329259115095182522750833\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $0.86209625132368835400397945687\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.3323533108820227713051341447\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 16 $ = $ 2^{2}\cdot2\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ (exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 4.5944671790003863383597632191 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 4.594467179 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.332353 \cdot 0.862096 \cdot 16}{2^2} \approx 4.594467179$
Modular invariants
Modular form 14400.2.a.cq
For more coefficients, see the Downloads section to the right.
Modular degree: | 2048 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{2}^{*}$ | Additive | -1 | 6 | 12 | 0 |
$3$ | $2$ | $III$ | Additive | 1 | 2 | 3 | 0 |
$5$ | $2$ | $III$ | Additive | -1 | 2 | 3 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | add | ss | ss | ord | ord | ss | ss | ord | ss | ord | ord | ss | ss |
$\lambda$-invariant(s) | - | - | - | 1,1 | 3,1 | 1 | 1 | 1,1 | 1,1 | 1 | 1,1 | 1 | 1 | 1,1 | 1,1 |
$\mu$-invariant(s) | - | - | - | 0,0 | 0,0 | 0 | 0 | 0,0 | 0,0 | 0 | 0,0 | 0 | 0 | 0,0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 14400.cq
consists of 2 curves linked by isogenies of
degree 2.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$4$ | 4.2.864000.1 | \(\Z/4\Z\) | Not in database |
$8$ | 8.0.186624000000.11 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.746496000000.4 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.2.8957952000000.1 | \(\Z/6\Z\) | Not in database |
$8$ | 8.0.23887872000.1 | \(\Z/10\Z\) | Not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$16$ | deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | deg 16 | \(\Z/3\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/10\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/10\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.