Properties

Label 14400.a
Number of curves $1$
Conductor $14400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 14400.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14400.a1 14400cp1 \([0, 0, 0, -8400, -354400]\) \(-8780800/2187\) \(-16325867520000\) \([]\) \(43008\) \(1.2533\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 14400.a1 has rank \(1\).

Complex multiplication

The elliptic curves in class 14400.a do not have complex multiplication.

Modular form 14400.2.a.a

sage: E.q_eigenform(10)
 
\(q - 5q^{7} - 6q^{11} + 3q^{13} + 2q^{17} - q^{19} + O(q^{20})\)  Toggle raw display