Show commands: SageMath
Rank
The elliptic curves in class 1440.e have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 1440.e do not have complex multiplication.Modular form 1440.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 1440.e
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 1440.e1 | 1440h2 | \([0, 0, 0, -243, 1242]\) | \(157464/25\) | \(251942400\) | \([2]\) | \(384\) | \(0.33467\) | |
| 1440.e2 | 1440h1 | \([0, 0, 0, 27, 108]\) | \(1728/5\) | \(-6298560\) | \([2]\) | \(192\) | \(-0.011906\) | \(\Gamma_0(N)\)-optimal |