Show commands: SageMath
Rank
The elliptic curves in class 143325eq have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 143325eq do not have complex multiplication.Modular form 143325.2.a.eq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 143325eq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 143325.ez1 | 143325eq1 | \([1, -1, 0, -1181742, 494854541]\) | \(-56723625/13\) | \(-41828405230828125\) | \([]\) | \(1935360\) | \(2.1809\) | \(\Gamma_0(N)\)-optimal |
| 143325.ez2 | 143325eq2 | \([1, -1, 0, 6921633, -20452369834]\) | \(11397810375/62748517\) | \(-201897722823808271203125\) | \([]\) | \(13547520\) | \(3.1539\) |