Properties

Label 143325eq
Number of curves $2$
Conductor $143325$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 143325eq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143325eq do not have complex multiplication.

Modular form 143325.2.a.eq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 3 q^{8} + 3 q^{11} - q^{13} - q^{16} - 7 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 143325eq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143325.ez1 143325eq1 \([1, -1, 0, -1181742, 494854541]\) \(-56723625/13\) \(-41828405230828125\) \([]\) \(1935360\) \(2.1809\) \(\Gamma_0(N)\)-optimal
143325.ez2 143325eq2 \([1, -1, 0, 6921633, -20452369834]\) \(11397810375/62748517\) \(-201897722823808271203125\) \([]\) \(13547520\) \(3.1539\)