Properties

Label 143.a
Number of curves $1$
Conductor $143$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 143.a1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1 + T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 143.a do not have complex multiplication.

Modular form 143.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} - q^{5} - 2 q^{7} - 2 q^{9} - q^{11} + 2 q^{12} - q^{13} + q^{15} + 4 q^{16} - 4 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 143.a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
143.a1 143a1 \([0, -1, 1, -1, -2]\) \(-262144/1859\) \(-1859\) \([]\) \(4\) \(-0.68950\) \(\Gamma_0(N)\)-optimal