# Properties

 Label 142956.l Number of curves 2 Conductor 142956 CM no Rank 0 Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("142956.l1")

sage: E.isogeny_class()

## Elliptic curves in class 142956.l

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
142956.l1 142956i2 [0, 0, 0, -40071, -1467826]  628992
142956.l2 142956i1 [0, 0, 0, 8664, -171475]  314496 $$\Gamma_0(N)$$-optimal

## Rank

sage: E.rank()

The elliptic curves in class 142956.l have rank $$0$$.

## Modular form 142956.2.a.l

sage: E.q_eigenform(10)

$$q - 2q^{5} - 2q^{7} - q^{11} + 2q^{13} - 4q^{17} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels. 