Show commands:
SageMath
E = EllipticCurve("c1")
E.isogeny_class()
Elliptic curves in class 1425.c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1425.c1 | 1425h3 | \([1, 0, 0, -150188, -22415133]\) | \(23977812996389881/146611125\) | \(2290798828125\) | \([2]\) | \(6912\) | \(1.5589\) | |
1425.c2 | 1425h4 | \([1, 0, 0, -30938, 1693617]\) | \(209595169258201/41748046875\) | \(652313232421875\) | \([2]\) | \(6912\) | \(1.5589\) | |
1425.c3 | 1425h2 | \([1, 0, 0, -9563, -337008]\) | \(6189976379881/456890625\) | \(7138916015625\) | \([2, 2]\) | \(3456\) | \(1.2123\) | |
1425.c4 | 1425h1 | \([1, 0, 0, 562, -23133]\) | \(1256216039/15582375\) | \(-243474609375\) | \([4]\) | \(1728\) | \(0.86571\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 1425.c have rank \(0\).
Complex multiplication
The elliptic curves in class 1425.c do not have complex multiplication.Modular form 1425.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.