# Properties

 Label 141570bq4 Conductor $141570$ Discriminant $2.988\times 10^{17}$ j-invariant $$\frac{19948814692561}{231344100}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -615308, -183750069]) # or

sage: E = EllipticCurve("141570.de3")

gp: E = ellinit([1, -1, 1, -615308, -183750069]) \\ or

gp: E = ellinit("141570.de3")

magma: E := EllipticCurve([1, -1, 1, -615308, -183750069]); // or

magma: E := EllipticCurve("141570.de3");

$$y^2+xy+y=x^3-x^2-615308x-183750069$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(-447, 1575\right)$$ $$\left(993, 13055\right)$$ $$\hat{h}(P)$$ ≈ $2.8468200032841836618745762753$ $4.5311414385328110636786940788$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-415, 207\right)$$, $$\left(905, -453\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-447, 1575\right)$$, $$\left(-447, -1129\right)$$, $$\left(-415, 207\right)$$, $$\left(905, -453\right)$$, $$\left(993, 13055\right)$$, $$\left(993, -14049\right)$$, $$\left(1961, 77427\right)$$, $$\left(1961, -79389\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$141570$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$298773494967132900$$ = $$2^{2} \cdot 3^{10} \cdot 5^{2} \cdot 11^{6} \cdot 13^{4}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{19948814692561}{231344100}$$ = $$2^{-2} \cdot 3^{-4} \cdot 5^{-2} \cdot 13^{-4} \cdot 37^{3} \cdot 733^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$12.811050383140845345746671895$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.17058109593251092235927005270$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$128$$  = $$2\cdot2^{2}\cdot2\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 141570.2.a.de

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - q^{13} + q^{16} - 6q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 2621440 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$17.482584115222234779814964639845029939$$

## Local data

This elliptic curve is semistable. There are 5 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{2}$$ Split multiplicative -1 1 2 2
$$3$$ $$4$$ $$I_4^{*}$$ Additive -1 2 10 4
$$5$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2
$$11$$ $$4$$ $$I_0^{*}$$ Additive -1 2 6 0
$$13$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X25.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split add nonsplit ss add nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss 4 - 2 2,2 - 2 2 2 2 2 2 2 2 2 2,2 1 - 0 0,0 - 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 141570bq consists of 3 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{-33})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{10}, \sqrt{33})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{-10}, \sqrt{33})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.0.48575324160000.138 $$\Z/4\Z \times \Z/4\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ 8.0.8670998958336.3 $$\Z/2\Z \times \Z/8\Z$$ Not in database $8$ Deg 8 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.