# Properties

 Label 141570bq2 Conductor $141570$ Discriminant $1.964\times 10^{16}$ j-invariant $$\frac{30400540561}{15210000}$$ CM no Rank $2$ Torsion structure $$\Z/{2}\Z \times \Z/{2}\Z$$

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -70808, 2686731]) # or

sage: E = EllipticCurve("141570bq2")

gp: E = ellinit([1, -1, 1, -70808, 2686731]) \\ or

gp: E = ellinit("141570bq2")

magma: E := EllipticCurve([1, -1, 1, -70808, 2686731]); // or

magma: E := EllipticCurve("141570bq2");

$$y^2 + x y + y = x^{3} - x^{2} - 70808 x + 2686731$$

## Mordell-Weil group structure

$$\Z^2 \times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(1445, -54723\right)$$ $$\left(795, -21573\right)$$ $$\hat{h}(P)$$ ≈ $3.391838159527209$ $2.2655707192664054$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(245, -123\right)$$, $$\left(\frac{155}{4}, -\frac{159}{8}\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-283, 141\right)$$, $$\left(-205, 3027\right)$$, $$\left(-205, -2823\right)$$, $$\left(-49, 2481\right)$$, $$\left(-49, -2433\right)$$, $$\left(3, 1571\right)$$, $$\left(3, -1575\right)$$, $$\left(245, -123\right)$$, $$\left(311, 3111\right)$$, $$\left(311, -3423\right)$$, $$\left(443, 7401\right)$$, $$\left(443, -7845\right)$$, $$\left(501, 9381\right)$$, $$\left(501, -9883\right)$$, $$\left(795, 20777\right)$$, $$\left(795, -21573\right)$$, $$\left(1445, 53277\right)$$, $$\left(1445, -54723\right)$$, $$\left(1895, 80727\right)$$, $$\left(1895, -82623\right)$$, $$\left(6053, 467421\right)$$, $$\left(6053, -473475\right)$$, $$\left(87563, 25866795\right)$$, $$\left(87563, -25954359\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$141570$$ = $$2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$19643227808490000$$ = $$2^{4} \cdot 3^{8} \cdot 5^{4} \cdot 11^{6} \cdot 13^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{30400540561}{15210000}$$ = $$2^{-4} \cdot 3^{-2} \cdot 5^{-4} \cdot 13^{-2} \cdot 3121^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$3.20276259579$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.341162191865$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$256$$  = $$2^{2}\cdot2^{2}\cdot2\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 141570.2.a.de

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} - q^{13} + q^{16} - 6q^{17} - 4q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 1310720 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$17.4825841152$$

## Local data

This elliptic curve is not semistable.

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$3$$ $$4$$ $$I_2^{*}$$ Additive -1 2 8 2
$$5$$ $$2$$ $$I_{4}$$ Non-split multiplicative 1 1 4 4
$$11$$ $$4$$ $$I_0^{*}$$ Additive -1 2 6 0
$$13$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X25.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^2\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 split add nonsplit ss add nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss 4 - 2 2,2 - 2 2 2 2 2 2 2 2 2 2,2 0 - 0 0,0 - 0 0 0 0 0 0 0 0 0 0,0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 141570bq consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base change curve
$2$ $$\Q(\sqrt{33})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-33}, \sqrt{39})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database
$4$ $$\Q(\sqrt{-33}, \sqrt{-39})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.