Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-3328733x+4763098981\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-3328733xz^2+4763098981z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-53259723x+304785075078\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 141570 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $-7436838745059609600000$ | = | $-1 \cdot 2^{13} \cdot 3^{6} \cdot 5^{5} \cdot 11^{9} \cdot 13^{2} $ |
|
| j-invariant: | $j$ | = | \( -\frac{3158470573163361}{5758438400000} \) | = | $-1 \cdot 2^{-13} \cdot 3^{3} \cdot 5^{-5} \cdot 11^{-3} \cdot 13^{-2} \cdot 48907^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.8868249549951296945470203784$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1385711742618895768184259710$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9824042900402343$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.897844269188716$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.11798457492210192742518446177$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 52 $ = $ 13\cdot1\cdot1\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $6.1351978959493002261095920122 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 6.135197896 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.117985 \cdot 1.000000 \cdot 52}{1^2} \\ & \approx 6.135197896\end{aligned}$$
Modular invariants
Modular form 141570.2.a.do
For more coefficients, see the Downloads section to the right.
| Modular degree: | 10483200 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $13$ | $I_{13}$ | split multiplicative | -1 | 1 | 13 | 13 |
| $3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
| $11$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $13$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 440 = 2^{3} \cdot 5 \cdot 11 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 439 & 2 \\ 438 & 3 \end{array}\right),\left(\begin{array}{rr} 221 & 2 \\ 221 & 3 \end{array}\right),\left(\begin{array}{rr} 321 & 2 \\ 321 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 439 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 111 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 177 & 2 \\ 177 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[440])$ is a degree-$4866048000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \) |
| $3$ | additive | $6$ | \( 15730 = 2 \cdot 5 \cdot 11^{2} \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 28314 = 2 \cdot 3^{2} \cdot 11^{2} \cdot 13 \) |
| $11$ | additive | $72$ | \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 5445 = 3^{2} \cdot 5 \cdot 11^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 141570.do consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 1430.e1, its twist by $33$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.440.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.85184000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | deg 8 | \(\Z/3\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | add | nonsplit | ord | add | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 4 | - | 0 | 0 | - | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.