Properties

Label 141120p
Number of curves $2$
Conductor $141120$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("141120.kf1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 141120p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
141120.kf1 141120p1 [0, 0, 0, -8652, -118384] [2] 294912 \(\Gamma_0(N)\)-optimal
141120.kf2 141120p2 [0, 0, 0, 31668, -908656] [2] 589824  

Rank

sage: E.rank()
 

The elliptic curves in class 141120p have rank \(1\).

Modular form 141120.2.a.kf

sage: E.q_eigenform(10)
 
\( q + q^{5} - 2q^{11} - 2q^{13} + 4q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.