Show commands for:
SageMath
sage: E = EllipticCurve("ij1")
sage: E.isogeny_class()
Elliptic curves in class 141120ij
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
141120.ix3 | 141120ij1 | [0, 0, 0, -99372, -7611856] | [2] | 1179648 | \(\Gamma_0(N)\)-optimal |
141120.ix2 | 141120ij2 | [0, 0, 0, -663852, 202600496] | [2, 2] | 2359296 | |
141120.ix1 | 141120ij3 | [0, 0, 0, -10542252, 13174915376] | [2] | 4718592 | |
141120.ix4 | 141120ij4 | [0, 0, 0, 182868, 683876144] | [2] | 4718592 |
Rank
sage: E.rank()
The elliptic curves in class 141120ij have rank \(0\).
Complex multiplication
The elliptic curves in class 141120ij do not have complex multiplication.Modular form 141120.2.a.ij
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.