Properties

Label 141120dg
Number of curves $4$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("dg1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 141120dg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
141120.bl3 141120dg1 \([0, 0, 0, -16023, 389648]\) \(82881856/36015\) \(197687478260160\) \([2]\) \(589824\) \(1.4393\) \(\Gamma_0(N)\)-optimal
141120.bl2 141120dg2 \([0, 0, 0, -124068, -16551808]\) \(601211584/11025\) \(3873060798566400\) \([2, 2]\) \(1179648\) \(1.7858\)  
141120.bl4 141120dg3 \([0, 0, 0, -588, -48014512]\) \(-8/354375\) \(-995929919631360000\) \([2]\) \(2359296\) \(2.1324\)  
141120.bl1 141120dg4 \([0, 0, 0, -1976268, -1069342288]\) \(303735479048/105\) \(295090346557440\) \([2]\) \(2359296\) \(2.1324\)  

Rank

sage: E.rank()
 

The elliptic curves in class 141120dg have rank \(0\).

Complex multiplication

The elliptic curves in class 141120dg do not have complex multiplication.

Modular form 141120.2.a.dg

sage: E.q_eigenform(10)
 
\(q - q^{5} - 4q^{11} + 6q^{13} - 6q^{17} - 4q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.