Properties

Label 141120.oq
Number of curves $4$
Conductor $141120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("141120.oq1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 141120.oq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
141120.oq1 141120jy4 [0, 0, 0, -7555212, -7992761616] [2] 4718592  
141120.oq2 141120jy3 [0, 0, 0, -2474892, 1400411376] [2] 4718592  
141120.oq3 141120jy2 [0, 0, 0, -499212, -109798416] [2, 2] 2359296  
141120.oq4 141120jy1 [0, 0, 0, 65268, -10224144] [2] 1179648 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 141120.oq have rank \(0\).

Modular form 141120.2.a.oq

sage: E.q_eigenform(10)
 
\( q + q^{5} + 4q^{11} - 6q^{13} + 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.