# Properties

 Label 141120.dl Number of curves $4$ Conductor $141120$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("dl1")

sage: E.isogeny_class()

## Elliptic curves in class 141120.dl

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
141120.dl1 141120lv4 [0, 0, 0, -3175788, -2178181712] [2] 3145728
141120.dl2 141120lv2 [0, 0, 0, -212268, -29037008] [2, 2] 1572864
141120.dl3 141120lv1 [0, 0, 0, -71148, 6920368] [2] 786432 $$\Gamma_0(N)$$-optimal
141120.dl4 141120lv3 [0, 0, 0, 493332, -181164368] [2] 3145728

## Rank

sage: E.rank()

The elliptic curves in class 141120.dl have rank $$1$$.

## Complex multiplication

The elliptic curves in class 141120.dl do not have complex multiplication.

## Modular form 141120.2.a.dl

sage: E.q_eigenform(10)

$$q - q^{5} - 6q^{13} + 2q^{17} - 8q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.