Properties

Label 141.e
Number of curves $1$
Conductor $141$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 141.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
141.e1 141e1 [0, 1, 1, -26, -61] [] 12 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 141.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 141.e do not have complex multiplication.

Modular form 141.2.a.e

sage: E.q_eigenform(10)
 
\( q + 2q^{2} + q^{3} + 2q^{4} - q^{5} + 2q^{6} - 3q^{7} + q^{9} - 2q^{10} + q^{11} + 2q^{12} - 2q^{13} - 6q^{14} - q^{15} - 4q^{16} + 2q^{17} + 2q^{18} + 6q^{19} + O(q^{20}) \)