Properties

Label 14025e
Number of curves $4$
Conductor $14025$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 14025e have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 14025e do not have complex multiplication.

Modular form 14025.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} - q^{4} - q^{6} - 3 q^{8} + q^{9} + q^{11} + q^{12} + 2 q^{13} - q^{16} - q^{17} + q^{18} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 14025e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
14025.t3 14025e1 \([1, 1, 0, -300, 1875]\) \(192100033/561\) \(8765625\) \([2]\) \(4096\) \(0.20263\) \(\Gamma_0(N)\)-optimal
14025.t2 14025e2 \([1, 1, 0, -425, 0]\) \(545338513/314721\) \(4917515625\) \([2, 2]\) \(8192\) \(0.54920\)  
14025.t1 14025e3 \([1, 1, 0, -4550, -119625]\) \(666940371553/2756193\) \(43065515625\) \([2]\) \(16384\) \(0.89578\)  
14025.t4 14025e4 \([1, 1, 0, 1700, 2125]\) \(34741712447/20160657\) \(-315010265625\) \([2]\) \(16384\) \(0.89578\)