Show commands: SageMath
Rank
The elliptic curves in class 14025e have rank \(0\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 14025e do not have complex multiplication.Modular form 14025.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 14025e
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 14025.t3 | 14025e1 | \([1, 1, 0, -300, 1875]\) | \(192100033/561\) | \(8765625\) | \([2]\) | \(4096\) | \(0.20263\) | \(\Gamma_0(N)\)-optimal |
| 14025.t2 | 14025e2 | \([1, 1, 0, -425, 0]\) | \(545338513/314721\) | \(4917515625\) | \([2, 2]\) | \(8192\) | \(0.54920\) | |
| 14025.t1 | 14025e3 | \([1, 1, 0, -4550, -119625]\) | \(666940371553/2756193\) | \(43065515625\) | \([2]\) | \(16384\) | \(0.89578\) | |
| 14025.t4 | 14025e4 | \([1, 1, 0, 1700, 2125]\) | \(34741712447/20160657\) | \(-315010265625\) | \([2]\) | \(16384\) | \(0.89578\) |