Properties

Label 1400.n
Number of curves $1$
Conductor $1400$
CM no
Rank $0$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1400.n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
1400.n1 1400i1 [0, 0, 0, -10300, 414500] [] 5760 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1400.n1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1400.n do not have complex multiplication.

Modular form 1400.2.a.n

sage: E.q_eigenform(10)
 
\( q + 3q^{3} - q^{7} + 6q^{9} - 5q^{11} + 5q^{13} + 7q^{17} - 2q^{19} + O(q^{20}) \)