Properties

Label 1400.e
Number of curves $1$
Conductor $1400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1400.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1400.e1 1400b1 \([0, -1, 0, -168, -788]\) \(-10303010/49\) \(-2508800\) \([]\) \(288\) \(0.077476\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1400.e1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1400.e do not have complex multiplication.

Modular form 1400.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} - q^{11} + 6 q^{13} - 7 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display