This is a model for the modular curve $X_1(14)$.
Minimal Weierstrass equation
\(y^2+xy+y=x^3-x\)
Mordell-Weil group structure
$\Z/{6}\Z$
Torsion generators
\( \left(1, 0\right) \)
Integral points
\( \left(-1, 0\right) \), \( \left(0, 0\right) \), \( \left(0, -1\right) \), \( \left(1, 0\right) \), \( \left(1, -2\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 14 \) | = | $2 \cdot 7$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-28 $ | = | $-1 \cdot 2^{2} \cdot 7 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{15625}{28} \) | = | $-1 \cdot 2^{-2} \cdot 5^{6} \cdot 7^{-1}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $-1.0320848985249978885230789428\dots$ | ||
Stable Faltings height: | $-1.0320848985249978885230789428\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $5.9440258682006497025087150302\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 2 $ = $ 2\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $6$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 0.33022365934448053902826194612 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 3 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 3 |
Local data
This elliptic curve is semistable. There are 2 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$7$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.1 |
$3$ | 3B.1.1 | 9.24.0.1 |
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 7 |
---|---|---|---|
Reduction type | nonsplit | ord | split |
$\lambda$-invariant(s) | 0 | 0 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 14.a
consists of 6 curves linked by isogenies of
degrees dividing 18.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{6}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \times \Z/6\Z\) | 2.0.7.1-28.2-a6 |
$3$ | \(\Q(\zeta_{7})^+\) | \(\Z/18\Z\) | 3.3.49.1-56.1-a5 |
$4$ | 4.2.448.1 | \(\Z/12\Z\) | Not in database |
$6$ | 6.0.1037232.1 | \(\Z/3\Z \times \Z/6\Z\) | Not in database |
$6$ | 6.0.21168.1 | \(\Z/18\Z\) | Not in database |
$6$ | \(\Q(\zeta_{7})\) | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
$8$ | 8.0.9834496.2 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$8$ | 8.0.120472576.1 | \(\Z/2\Z \times \Z/12\Z\) | Not in database |
$12$ | 12.0.52716660869376.1 | \(\Z/6\Z \times \Z/6\Z\) | Not in database |
$12$ | 12.0.1075850221824.1 | \(\Z/2\Z \times \Z/18\Z\) | Not in database |
$12$ | 12.6.10578455953408.1 | \(\Z/36\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/24\Z\) | Not in database |
$18$ | 18.0.1115906277282951168.1 | \(\Z/3\Z \times \Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Additional information
This curve $E$ also parametrizes pairs $(R,T)$ where $R$ is a rational rectangle, $T$ is a Pythagorean triangle, and $R,T$ have the same perimeter and the same area. (That is, $E$ is birational with the curve of $(a:b:c:x:y) \in {\bf P}^4$ with $a^2+b^2=c^2$, $a+b+c=2x+2y$, and $ab/2=xy$.) Unfortunately the six rational points on $E$ all yield degenerate solutions. [Noted in passing in Richard Guy's paper "My Favorite Elliptic Curve: A Tale of Two Types of Triangles", Amer. Math. Monthly 102 #9 (Nov. 1995), 771-781.]