Properties

Label 139650.v
Number of curves $1$
Conductor $139650$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("v1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 139650.v

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
139650.v1 139650iw1 \([1, 1, 0, -1104205, -438028835]\) \(121545075026974907665/2817369305745408\) \(3451277399538124800\) \([]\) \(3953664\) \(2.3431\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 139650.v1 has rank \(0\).

Complex multiplication

The elliptic curves in class 139650.v do not have complex multiplication.

Modular form 139650.2.a.v

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{8} + q^{9} - 2 q^{11} - q^{12} - 4 q^{13} + q^{16} - 3 q^{17} - q^{18} - q^{19} + O(q^{20})\)  Toggle raw display