Properties

Label 139392s
Number of curves $2$
Conductor $139392$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 139392s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 8 T + 23 T^{2}\) 1.23.i
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 139392s do not have complex multiplication.

Modular form 139392.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} - 6 q^{13} + 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 139392s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
139392.bq2 139392s1 \([0, 0, 0, 1815, -50578]\) \(4000/9\) \(-1487771100288\) \([2]\) \(163840\) \(1.0198\) \(\Gamma_0(N)\)-optimal
139392.bq1 139392s2 \([0, 0, 0, -14520, -553696]\) \(16000/3\) \(63478233612288\) \([2]\) \(327680\) \(1.3664\)