Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-78264810x-265639394700\) | (homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-78264810xz^2-265639394700z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-1252236963x-17002173497762\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = | \(\left(\frac{201940}{9}, \frac{81922090}{27}\right)\) |
$\hat{h}(P)$ | ≈ | $5.8918100397071669283206331794$ |
Torsion generators
\( \left(-5340, 2670\right) \), \( \left(10212, -5106\right) \)
Integral points
\( \left(-5340, 2670\right) \), \( \left(10212, -5106\right) \)
Invariants
Conductor: | \( 139230 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \cdot 17$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $193448291332104900000000 $ | = | $2^{8} \cdot 3^{14} \cdot 5^{8} \cdot 7^{2} \cdot 13^{4} \cdot 17^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{72727020009972527154752161}{265361167808100000000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-8} \cdot 7^{-2} \cdot 13^{-4} \cdot 17^{-2} \cdot 73^{3} \cdot 5717977^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $3.3289442368870776583000288738\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $2.7796380925530228126024062553\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $0.9864606854599206\dots$ | |||
Szpiro ratio: | $5.584353680234062\dots$ |
BSD invariants
Analytic rank: | $1$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $5.8918100397071669283206331794\dots$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.050769538813829542430280013668\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 256 $ = $ 2\cdot2^{2}\cdot2\cdot2\cdot2^{2}\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $4$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( rounded) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L'(E,1) $ ≈ $ 4.7859916559139774230516998751 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 4.785991656 \approx L'(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 0.050770 \cdot 5.891810 \cdot 256}{4^2} \approx 4.785991656$
Modular invariants
Modular form 139230.2.a.j
For more coefficients, see the Downloads section to the right.
Modular degree: | 25165824 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$3$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
$5$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$13$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.98 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 371280 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 247519 & 371272 \\ 0 & 371279 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 65521 & 16 \\ 21846 & 97 \end{array}\right),\left(\begin{array}{rr} 371265 & 16 \\ 371264 & 17 \end{array}\right),\left(\begin{array}{rr} 114249 & 16 \\ 285668 & 121 \end{array}\right),\left(\begin{array}{rr} 212169 & 16 \\ 159314 & 345 \end{array}\right),\left(\begin{array}{rr} 297033 & 8 \\ 74212 & 371241 \end{array}\right),\left(\begin{array}{rr} 5 & 8 \\ 68 & 92929 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 15 & 16 \\ 224 & 232289 \end{array}\right)$.
The torsion field $K:=\Q(E[371280])$ is a degree-$3051534277662474240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/371280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 9 = 3^{2} \) |
$3$ | additive | $8$ | \( 15470 = 2 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
$5$ | nonsplit multiplicative | $6$ | \( 27846 = 2 \cdot 3^{2} \cdot 7 \cdot 13 \cdot 17 \) |
$7$ | nonsplit multiplicative | $8$ | \( 19890 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \cdot 17 \) |
$13$ | split multiplicative | $14$ | \( 10710 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 8190 = 2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 139230.j
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 46410.ck6, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{-119})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{119})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.4158271385856.10 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | nonsplit | nonsplit | ord | split | nonsplit | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 8 | - | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.